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We first show how an autonomous system of ordinary first-order difference equations
can be embedded into a Hilbert space description by using Bose operators and coherent
states. Then we describe how an invariant can be expressed using Bose operators. Two
examples are given.
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It is well known that nonlinear ordinary and nonlinear partial differential
equations can be embedded into linear equations in Hilbert space by using Bose
operators and Bose field operators, respectively (Kowalski and Steeb, 1991). Here
we consider an autonomous system of (nonlinear) difference equations and em-
bedding. We describe how invariants can be expressed as Bose operators. Consider
the autonomous system of first-order ordinary difference equations

x1, t+1 = f1(x1,t , x2,t ), x2, t+1 = f2(x1,t , x2,t ), t = 0, 1, 2,. . . (1)

where we assume thatf1 and f2 are analytic functions andx1,0, x2,0 are the initial
values withx1,t , x2,t ∈ R. The extension to higher dimensions is straightforward.
To embed this system into a Hilbert space by using Bose operatorsb†j , bj with
j = 1, 2, we consider the Hilbert space states (Kowalski and Steeb, 1991)

|x1, x2, t〉 := exp

(
1

2

(
x2

1,t + x2
2,t − x2

1,0− x2
2,0

)) |x1,t , x2,t 〉, (2)
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where|x1,t , x2,t 〉 is the normalized coherent state

|x1,t , x2,t 〉 := exp

(
−1

2

(
x2

1,t + x2
2,t

))
exp(x1,t b

†
1 + x2,t b

†
2)|0〉, (3)

where|0〉 denotes the vacuum state with〈0|0〉 = 1 andbj |0〉 = 0. We recall that
the Bose operators satisfy the commutation relation

[bj , bk] = [b†j , b†k ] = 0, [bj , b†k ] = δ jk I , (4)

where j , k = 1, 2, andI is the identity operator. Next we introduce the evolution
operator

M̂ =
∞∑
j=0

∞∑
k=0

b† j
1

j !

b†k2

k!
( f1(b1, b2)− b1) j ( f2(b1, b2)− b2)k. (5)

It follows that

|x1, x2, t + 1〉 = M̂ |x1, x2, t〉, t = 0, 1, 2,. . . (6)

Thus the system of nonlinear difference equations (1) is mapped into a linear
difference Eq. (6) in a Hilbert space. The price to be paid for linearity is that we have
to deal with Bose operators which are linear unbounded operators. Furthermore
we have the eigenvalue equations

b1|x1, x2, t〉 = x1,t |x1, x2, t〉, b2|x1, x2, t〉 = x2,t |x1, x2, t〉, (7)

for the states given by (2), since|x1,t , x2,t 〉 is a coherent state. LetK (x1, x2) be
an analytic function ofx1, x2. Let K̂ (b1, b2) be the corresponding operator. Then
using (7), we have

K̂ (b1, b2)|x1, x2, t〉 = K (x1,t , x2,t )|x1, x2, t〉. (8)

Thus

[ K̂ , M̂ ]|x1, x2, t〉 = (K (x1,t+1, x2,t+1)− K (x1,t , x2,t ))|x1, x2, t + 1〉, (9)

where [K̂ , M̂ ] = K̂ M̂ − M̂ K̂ . ThusK̂ is an invariant, i.e.,

K (x1,t+1, x2,t+1) = K (x1,t , x2,t ), (10)

if

[ K̂ , M̂ ] = 0. (11)

For the actual calculation of the commutators, we use the formula

[ fi (b), b†j ] =
∂

∂bj
fi (b), (12.a)

[bi , gj (b†)] = ∂

∂b†j
gj (b†), (12.b)
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and

[ AB, C] = A[B, C] + [ A, C]B, [A, BC] = [ A, B]C + B[ A, C]. (13)

As our first example, let us consider the logistic equation

xt+1 = 2x2
t − 1, t = 0, 1, 2,. . . , x0 ∈ [−1, 1], (14)

which is the most studied equation with chaotic behavior. All quantities of interest
in chaotic dynamics can be calculated exactly. Examples are the fixed points and
their stability, the periodic orbits and their stability, the moments, the invariant
density, the topological entropy, the metric entropy, the Lyapunov exponent, and
the autocorrelation function. The exact solution of (14) takes the form

xt = cos(2t arccos(x0)), (15)

since cos(2α) ≡ 2 cos2(α)− 1. The Lyapunov exponent for almost all initial con-
ditions is given by ln (2). The logistic equation is an invariant of a class of second-
order difference equations

xt+2 = g(xt , xt+1), t = 0, 1, 2,. . . . (16)

This means that if (14) is satisfied for a pair (xt , xt+1), then (16) implies that (xt+1,
xt+2) also satisfies (14). In general, let

xt+1 = f (xt ), t = 0, 1, 2,. . . (17)

be a first-order difference equation. Then (17) is called an invariant of (16) if

g(x, f (x)) = f ( f (x)). (18)

We find that the logistic map (14) is an invariant of the trace map (Steeb, 2002)

xt+2 = 1+ 4x2
t (xt+1− 1). (19)

The trace map plays an important role for the study of tight-binding Schr¨odinger
equations with disorder. The second-order difference Eq. (19) can be written as a
first-order system of difference equations (x1,t ≡ xt ), x2,t ≡ xt+1,

x1,t+1 = x2,t , x2,t+1 = g(x1,t , x2,t ). (20)

After embedding the two maps into the linear unbounded operatorsM̂ andK̂ , we
can show that [̂M , K̂ ] = 0 using the commutation relation given above.

Another example is the Fibonacci trace map (Steeb, 2002)

xt+3 = 2xt+2xt+1− xt . (21)

This map admits the invariant

I (xt , xt+1, xt+2) = x2
t + x2

t+1+ x2
t+2− 2xt xt+1xt+2− 1. (22)
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The Fibonacci trace map can be written as a system of three first-order difference
equations. After embedding the two maps into the linear unbounded operatorsM̂
andK̂ , we find that [M̂ , K̂ ] = 0, sinceI is an invariant of (21).
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